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RICHARD DEDEKIND   (October 6, 1831 – February 12, 1916)  

by HEINZ KLAUS STRICK, Germany  

The biography of JULIUS WILHELM RICHARD DEDEKIND begins and 

ends in Braunschweig (Brunswick): The fourth child of a 

professor of law at the Collegium Carolinum, he attended 

the Martino-Katherineum, a traditional gymnasium 

(secondary school) in the city. At the age of 16, the boy, who 

was also a highly gifted musician, transferred to the Collegium Carolinum, an educational 

institution that would pave the way for him to enter the university after high school. There he 

prepared for future studies in mathematics. 

In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on 

experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended 

a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the 

end of his life and at the time was involved primarily in activities related to astronomy. After only 

four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. 

He was GAUSS’s last doctoral student.  

        (drawings © Andreas Strick) 

He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received 

his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia 

legendi (official permission allowing those completing their habilitation to lecture), he gave 

lectures on probability theory and geometry. 

Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, 

who at the time were mostly preparing students to become secondary-school teachers, had lost 

contact with current developments in mathematics; this in contrast to the University of Berlin, at 

which PETER GUSTAV LEJEUNE DIRICHLET taught. On GAUSS’s  death in 1855, DIRICHLET was appointed his 

successor in Göttingen. 

DEDEKIND worked closely with DIRICHLET; eager to expand his mathematical horizons, he attended 

DIRICHLET’s lectures on such topics as number theory and the theory of partial differential 

equations. 

In 1858, the Polytechnikum in Zurich (today ETH = Eidgenössische Technische Hochschule) 

advertised throughout Europe for professors of mathematics. Both DEDEKIND and RIEMANN applied. 

DIRICHLET thought that DEDEKIND was better suited for the position, since he, in contrast to RIEMANN, 

had acquired experience as a lecturer on elementary topics for an inexperienced audience. 

DEDEKIND’s lectures were distinguished, he wrote, by their clarity, precision, and liveliness.  

A Swiss delegation visited both applicants and determined that RIEMANN was too introverted to 

teach future engineers. They therefore expressed a preference for DEDEKIND over RIEMANN. 
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In preparing his lectures in Zurich, DEDEKIND became aware that the arithmetic foundations of the 

differential calculus had never been adequately worked out. He therefore conceived of the idea to 

define the real numbers by what are today called DEDEKIND cuts in the set of rational numbers.  

DEDEKIND soon, however, became unhappy with his position in Zurich. He had expected that the 

students would follow his lectures attentively and with close professional interest. Instead, he had 

to deal with the “childish behaviour” of some of them.  

When in 1861, the Collegium Carolinum in Braunschweig was expanded into an institute of 

technology and advertised for a professor of mathematics, he applied for the position, in order to 

be able to return to his hometown, with the express request that he never again have to teach 

“lower mathematics”. His conditions were accepted, and from then on, until his retirement in 

1894, DEDEKIND worked in Braunschweig. He declined all offers, even from Göttingen.  

In the early 1870s, the Collegium Carolinum was transformed into the Herzogliche Technische 

Hochschule Carolo-Wilhelmina. DEDEKIND was named its first director. When the duke of 

Braunschweig gave his consent for the new university, DEDEKIND took over direction of the building 

commission. 

In 1872, DEDEKIND published a paper on Continuity and Irrational Numbers (Stetigkeit und 

Irrationale Zahlen), in which he presented his idea, developed earlier in Zurich, of cuts. (What 

DEDEKIND meant here by continuity is today known as completeness.)  

The core of this idea is the following consideration: The number line is apparently complete, that 

is, without any holes. If one chooses some point, say P, then this point will correspond to either a 

rational or irrational number. Every point divides the number line into two parts:  

• All points of the line are decomposed into two classes in such a way that every point of the first 

class lies to the left of every point of the second class, and so there exists one and only one 

point that brings about this division of all points into two classes, this cutting of the line into 

two pieces. 

By this method, a rational number a divides the set ℚ of rational numbers into two subsets  

A1 and A2; all elements of the lower class A1 are smaller than all elements of the upper class A2.  

Regardless of whether one considers the rational number a as belonging to the lower class (as the 

largest number in A1) or to the upper class (as the smallest number in A2), the result is that the set 

ℚ of rational numbers is divided in two subsets by means of the rational number a.  

Moreover, every irrational number b, for example 2 , divides the set ℚ of rational numbers  

into two subsets A1 and A2; the elements of the lower class A1 are all smaller than the irrational 

number b under consideration, and it, in turn, is smaller than all the elements of the upper  

class A2:   A1 = { x ∈ ℚ | x² < 2}  and  A2 = { x ∈ ℚ | x² > 2}. 

The lower class associated with an irrational number b, however, has no largest element, while the 

upper class has no smallest element. The irrational numbers thus fill the “holes” between all the 

pairs of subsets of rational numbers:  

It is in this property, that not all cuts are brought about by rational numbers, that the 

incompleteness, or discontinuity, of the set of all rational numbers consists. Now, whenever one 

has a cut (A1, A2) not produced by a rational number, we have thereby created a new, irrational, 

number α, which we may consider to be completely defined by this cut (A1, A2) …  

DEDEKIND also defined the order properties of the real numbers and their arithmetic operations by 

way of cuts.  
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Through a chance meeting during a vacation in 1874 with GEORG CANTOR, the 

creator of set theory, there arose a close friendship maintained through 

correspondence. DEDEKIND’s contribution to the theory of infinite sets is the 

following theorem: A set is infinite if this set is similar to (in today’s 

terminology, of the same cardinality as) a proper subset of itself. For 

example, the set of natural numbers ℕ is of the same cardinality as a proper 

subset, e.g.,  the set of squares 1, 4, 9, 16, …, since the mapping n → n²  and 

the inverse mapping n² → n are bijections between the set of natural 

numbers ℕ and the set of squares of natural numbers.  

A result of DEDEKIND’s work on the foundations of mathematics was the 1888 book Was sind und 

was sollen die Zahlen? (The Nature and Meaning of Numbers, or more literally, What are the 

numbers and what are they for?). In this work, he attempted to provide a foundation for the 

natural numbers through set-theoretic considerations. For him, Numbers are … independent 

creations of the human imagination, which serve as a means of understanding the diversity of 

things more easily and more accurately.  

GIUSEPPE PEANO employed these ideas by and large in his axiomatization of the natural numbers, 

which he published in 1889.  

DEDEKIND was working on algebraic structures as early as during his time as a lecturer in Göttingen. 

He was one of the first mathematicians to make use of GALOIS theory in his lectures. In 1863, he 

had begun to edit DIRICHLET’s Lectures on Number Theory. In 1879, he extended those lectures with 

his own contribution Über die Theorie der ganzen algebraischen Zahlen (On the Theory of 

Algebraic Integers), which dealt with properties of number fields. For over one hundred years, 

mathematicians had been working on the question whether there existed additional mathematical 

objects that possessed some of the properties enjoyed by the set ℕ of natural numbers, such as 

the fundamental theorem of arithmetic: Every natural number greater than 1 can be decomposed 

uniquely (up to the order of the factors) as a product of prime numbers.  

DEDEKIND showed that an analogous theorem holds for so-called rings of integers:  

For every proper ideal a there exists a decomposition into prime ideals p1, p2, p3, … : 

...321
321 ⋅⋅⋅= eee pppa  (see the reproduction of the DDR postage stamp). 

DEDEKIND’s enormous lifetime accomplishments, including his ground-breaking discoveries in 

algebra and number theory, led to numerous honours and awards from institutions both at home 

and abroad. When war broke out in 1914, DEDEKIND declined to sign a manifesto glorifying the aims 

of the war. The French Academy of Sciences thanked him for this in a special way: When DEDEKIND 

died, in 1916, the Academy was the first institution – and this despite being at war with Germany – 

to publish an obituary honouring him. 
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Here an important hint for philatelists who also like individual (not officially issued) stamps: 
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