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DIOPHANTUS OF ALEXANDRIA  (about 250 AD) 

by HEINZ KLAUS STRICK, Germany  

It is doubtful whether DIOPHANTUS actually looked like the illustration 
on the right. We do not even know when this famous mathematician 
lived.  DIOPHANTUS quoted the definition of a polygonal number from 
HYPSICLES, a mathematician and astronomer who lived around 175 BC. 
That would be the earliest point in time that could be used for our life 
dates. On the other hand, THEON OF ALEXANDRIA, father of the famous 
mathematician HYPATIA, wrote in 364 AD about Arithmetica, the main 
work of DIOPHANTUS. Since the same symbols are used in a 3rd century 
papyrus as in Arithmetica, it is now assumed that DIOPHANTUS lived in 
Alexandria around 250 AD.          (drawings: © Andreas Strick) 

Even if we have not found out when he was alive, we can still tell how long he lived from an 
epitaph created around 500 AD. The linear equation coming from this puzzle has the solution 84: 

This tomb holds Diophantus. Ah, what a marvel! And the tomb tells scientifically the 

measure of his life. God vouch safed that he should be a boy for the sixth part of his life; 

when a twelfth was added, his cheeks acquired a beard; He kindled for him the light of 

marriage after a seventh, and in the fifth year after his marriage He granted him a son. 

Alas! late-begotten and miserable child, when he had reached the measure of half his 

father's life, the chill grave took him. After consoling his grief by this science of numbers 

for four years, he reached the end of his life. 

Alexandria still played a special role in the first centuries of our era as a science centre in the 
ancient world with a large number of scrolls (perhaps 10,000 or even 100,000). In 389, however, 
the Christian emperor THEODOSIUS ordered the destruction of all "pagan" writings; the remnants 
were burned in 642 by order of the Caliph UMAR because they were "superfluous".  

It is therefore not surprising that only two of the writings of DIOPHANTUS have survived: the 
Arithmetica and a work about polygonal numbers. 

In the 9th century, the surviving writings of the Greeks in Baghdad were collected in the House of 

Wisdom and translated into Arabic, including presumably the first seven of the 13 books 
(chapters) of DIOPHANTUS's Arithmetica. Unfortunately these translations are also lost.  

It was not until 1971 that a scientist found a copy of Books IV to VII in Meshed (Iran), which were 
archived there under the name of the translator, since until then none of the librarians had been 
able to decipher the name of the real author, written in calligraphic script. 

Regardless of the efforts in Islamic culture, Byzantine scholars in the 11th century began to study 
the writings of their Greek ancestors. The problems in DIOPHANTUS's 
Arithmetica, however, caused them considerable problems; one of them 
wrote a curse on DIOPHANTUS on the margin of the chapter because he 
could not understand the solution. 

In 1463 JOHANNES MÜLLER from Königsberg, known as REGIMONTANUS (the 
Latin translation of Königsberg), discovered Byzantine manuscripts of six 
Arithmetica chapters in Venice – chapters I to III as well as three 
chapters, which are now denoted chapters VIII, IX, X (until 1971 they 
were erroneously numbered IV to VI). From this point on, numerous 
European mathematicians dealt with this collection of 189 problems.  
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In 1575, XYLANDER published the first printed translation in 
Latin. In 1621 a translation by BACHET DE MÉZIRIAC was published 
in Paris, on the margin of which PIERRE DE FERMAT noted the 
famous sentence:  

Cuius rei demonstrationem mirabilem sane detexi. Hanc 

marginis exiguitas non caperet. (I have found a truly wonderful 
proof, but this margin is too narrow to contain it.)  

In the context of the problem of splitting a given square number into two square numbers, he 
claimed that the corresponding problem was not solvable for cubic numbers and also not for 
higher natural exponents:  

• The equation nnn zyx =+  with x, y, z ∈N  has no solution for n > 2  (FERMAT's conjecture). 

FERMAT was fascinated by the abundance of original tasks and tricky solutions in 
DIOPHANTUS's work, and he dealt with the problems and the question of the 
generalisation of individual problems.  

After his death, FERMAT's collected notes on BACHET's translation were published, 
which in turn prompted other mathematicians such as EULER and LAGRANGE to 
deal more intensively with questions arising from the problems of Arithmetica. 

In the first volume of his Arithmetica, DIOPHANTUS defined basic terms and letter symbols that he 
uses further on: The character ς, the last letter of the word ἀριθμός (arithmos = number), is used 
as a placeholder for the unknown number. He also introduced special signs for powers up to the 
sixth, as well as for reciprocal values. Terms are noted as a sequence of number symbols (see 
figure below), between which there are symbols for addition or subtraction; the letters  ἴσ (ἴσος; 
isos = equal) are added to form equations. 

 

In contrast to EUCLID, DIOPHANTUS did not solve equations by geometrical considerations, but by 
reshaping and substituting them. Therefore, the rediscovery of Arithmetica has had a major 
impact on the development of algebra. While EUCLID used fractions only in the sense of rational 
numbers, DIOPHANTUS uses them as if they were natural numbers. Solutions to the equations he 
considered can be any positive rational numbers (in contrast to the term DIOPHANTine equations 
used today, whose solutions must be integers). 

In Book I, DIOPHANTUS dealt with linear and quadratic equations as well as with linear systems of 
equations, which he solved by skilfully introducing new variables. The methods were developed in 
Babylonia 2000 years earlier and were obviously considered routine procedures at the time of 
DIOPHANTUS. 

The examples selected below from various books (listed here in their usual spelling) are intended 
to give an insight into the virtuoso methods with which DIOPHANTUS solved the problems he had 
put together. In most cases, in addition to the example-based solution, he also specified necessary 
conditions for the given numbers. 
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• Problem 1 from Book I:  Divide a given number into two numbers if their difference is given. 

DIOPHANTUS uses the example of the starting number 100 and difference 40 as follows:  

If x is the smaller number, then x + 40 is the larger number and the sum of the two numbers  
is equal to 2x + 40; therefore the smaller number x is equal to 30 and the larger number is  
equal to 70. 

• Problem 16 from Book I:  Finding three numbers so that the sums of two of the numbers are 

equal to given numbers. 

For example, if the given sums are: x + y = 20, y + z = 30 and z + x = 40, then DIOPHANTUS sets  

s = x + y + z, thus: x = s – 30, y = s – 40, z = s – 20. Then the sum x + y + z becomes: s = 3s – 90. 

Also s = 45, therefore x = 15, y = 5 and z = 25. 

• Problem 28 from Book I:  Find two numbers, where the sum and sum of the squares of the 

numbers are given.  

Example: Sum of the numbers: 20, Sum of the square numbers: 208.  

Approach: Call the difference of the numbers 2x; then the one number 10 + x, is the other 10 – x 
and the sum of the squares is (10 + x)2 + (10 – x)2 = 200 + 2x

2 = 208, thus x2 = 4 and x = 2. The 
numbers we are looking for are 8 and 12. 

• Problem 8 from Book II:  Splitting a given square number into two squares.  

(FERMAT notes his famous margin note alongside the solution to this problem.)  

Example: If 16 is the given square number and x2 one of the two square numbers you are looking 
for, then 16 – x2 must also be a square number.  

Approach: Set (2x – 4)2 = 16 – x2, then 5x
2 = 16x, thus 5

16=x . The number 16 can therefore be 

broken down into the square numbers 25
256  and 25

144 . The method works for every approach with a 

natural number m, thus: (mx – 4)2 = 16 – x2, where the 4 in the parenthesis is the root of the given 
square number 16. 

• Problem 9 from Book II:  Divide a given number, which is the sum of two squares, into two 

other squares.  

DIOPHANTUS explains the solution using the example of the number 13: 22 + 32 = 13.  

Approach: x = 2 + t;  y = 2t – 3; then x2 + y2 = 4 + 4t + t2 + 4t
2 – 12t + 9 = 5t

2 – 8t + 13 = 13,  

also t ∙ (5t – 8) = 0, that is 5
8=t .  

In fact, 5
18=x , 5

1=y  is a further decomposition of the number 13 into two squares: 

13)()( 25
325

25
13242

5
12

5
18 ===+ + .  The method works not only with the approach x = 2 + t, but for any 

a, k ∈ N  with x = 2 + at; y = kt – 3. 

• Problem 11 from Book II:  To two given numbers add one and the same number so that each 

becomes a square.  

Example: The numbers should be 2 and 3, i.e. 2 + t and 3 + t must then be square numbers.  

To solve this problem, DIOPHANTUS uses the property that for any number x, y is:  
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22)()( yxyxyx −=−⋅+  and  )]()[(2
1 yxyxx −++⋅= , )]()[(2

1 yxyxy −−+⋅=  

The difference 1)2()3(22 =+−+=− ttyx  can be calculated, for example, as the product of 

4=+ yx  and 4
1=− yx , so 8

17
4
1

2
1 ]4[ =+⋅=x  and 8

15
4
1

2
1 ]4[ =−⋅=y , i.e.  

64
2892 =x  and 64

2252 =y ; 64
2252 =+ t  and 64

2893 =+ t  are followed by 64
97=t .  

• Problem 20 from Book II:  To find two numbers in such a way that the square of each, 

increased by the other, results in a square. 

If x, y are the two numbers, then the following should apply: x2 + y and y2 + x are square numbers.  

Approach: x = t and y = 2t + 1; then x2 + y = t2 + 2t + 1 = (t + 1)2  is obviously a square number.  

So that y2 + x = 4t
2 + 5t + 1 is the square of a number, DIOPHANTUS continues:  

4t
2 + 5t + 1 = (2t – 2)2 = 4t

2 – 8t + 4, also 13t = 3 or 13
3=t .  

Two numbers that meet the above condition are 13
3=x  and 13

19=y :  
2

13
16

169
256

169
2479

13
192

13
3 )()( ===+ + ; 2

13
20

169
400

169
39361

13
32

13
19 )()( ===+ +  

The method is also successful here with other approaches, in which the squares of the variables 
are ultimately omitted. 

• Problem 10 from Book III:  Finding three numbers so that the product of two of them, 

increased by 12, each time gives a square number.  

DIOPHANTUS drew the reader's attention to the fact that the number 12 should be used, which can 
be represented as a product in different ways:  

22 24)24()24(6212 −=+⋅−=⋅= , also 22 4122 =+ ;  
2

2
12

2
7

2
1

2
7

2
1

2
7 )()()()(4312 −=+⋅−=⋅= ,  also 2

2
72

2
1 )(12)( =+ . 

If you start with the number 4t, then the second number is 1−t , and its product, increased by 12, is 

equal to the square number 16. As third number you have to choose t4
1 , then the product with 4t 

is equal to t2 and the product with 1−t  equals 4
1 . For which numbers t2 + 12 is a square number, 

one finds out with the approach t + 3: The equation t2 + 12 = (t + 3)2 has the solution 2
1=t . 

Accordingly, three suitable numbers are 2, 2, 8
1 . 

• Problem 1 from Book VIII:  Divide a number into two cubic numbers so that the sum of the 

third roots from the cubic numbers is equal to a given number.  

Example: Given are 370 and 10; then 343 and 27 are the two cubic numbers. 

• Problem 18 from Book VIII: Two numbers can be found such that the third power of the first, 

increased by the second, results in a cubic number and the square of the second, increased by 

the first, a square number.  

Solution: The numbers are 16
1  and 4096

262143 . 

• Problem 26 from Book VIII:  Find two numbers so that their product, multiplied by the two 

numbers, gives a cubic number.  

Solution: The numbers are 13
112  and 169

27 . 
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• Problem 38 from Book VIII:  Find three numbers so that their sum multiplied by the first 

number gives a triangular number, multiplied by the second number a square number and by 

the third number a cubic number.  

Solution: The numbers are 81
153 , 81

6400  and 81
8 . 

• Problem 15 from Book IX:  Find three numbers so that the third power of their sum, increased 

by each of the numbers, gives a cubic number.  

Solution: The numbers are 3375
1538 , 3375

18577  and 7. 

• Problem 23 from Book IX:  Finding three square numbers such that each minus the product of 

the three numbers gives a square number.  

Solution: The numbers are 169
144 , 169

100  and 625
676 . 

• Problem 2 from Book X:  Finding a right-angled triangle so that the hypotenuse, added to the 

other two sides, gives a cubic number.  

Solution: The side length are 352
135 and 377 (or multiples). 

• Problem 18 from Book X:  Finding a right-angled triangle such that the hypotenuse, added to 

the area, gives a cubic number and the circumference is a square number.  

Solution: The side lengths are 1 257 728, 24 121 185 and 24 153 953 (or multiples). 

Whoever works with DIOPHANTUS's Arithmetica feels the fascination that arises from the problems 
and can understand why so many famous mathematicians dealt with them.  

The German mathematician CARL GUSTAV JACOB JACOBI (1804 – 1851) summed up the significance of 
DIOPHANTUS in the words:  

DIOPHANTUS will always be remembered because he started the investigation of the deep-

rooted properties and relations between numbers which have finally been understood by 

the beautiful research of modern mathematics. 

 

 

First published 2012 by Spektrum der Wissenschaft Verlagsgesellschaft Heidelberg 

https://www.spektrum.de/wissen/diophant-von-alexandria-um-250/1165488 

Translated 2020 by John O’Connor, University of St Andrews 

 

 

Here an important hint for philatelists who also like individual (not officially issued) stamps. 
Enquiries at europablocks@web.de with the note: "Mathstamps". 

 



©  Heinz Klaus Strick Leverkusen,  p. 6 / 6 

    

    

    

    


