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PIETRO	MENGOLI			(1626	–	June	7,	1686)	

by	HEINZ	KLAUS	STRICK,	Germany	

	

Little	is	known	about	PIETRO	MENGOLI's	origins,	nor	is	his	

exact	date	of	birth	likely	to	be	found	out.	He	spent	his	

entire	life	in	Bologna,	which	at	that	time	belonged	to	the	

Papal	States.	

At	the	University	of	Bologna	he	attended	lectures	by	

BONAVENTURA	CAVALIERI.	When	the	latter	died	in	November	

1647,	MENGOLI	was	commissioned	to	take	over	his	lectures	

in	arithmetic.	In	1650	MENGOLI	received	his	doctorate	in	

philosophy	and	three	years	later	also	in	civil	and	canon	

law	and	in	parallel	he	gave	lectures	on	mechanics.	

From	1668	until	his	death	he	held	the	chair	of	mathematics.		

	

Ordained	as	a	priest,	he	took	over	the	parish	of	Santa	Maria	Magdalena	

and	the	management	of	an	associated	monastery	from	1660	onwards,	

which	took	up	so	much	of	his	time	that	he	did	not	publish	anything	

again	until	1670.	The	publications	from	the	1650s	and	1670s	dealt,	

among	other	things,	with	infinite	series	and	with	area	determinations	

(see	below),	with	EUCLID's	doctrine	of	proportions	and	with	the	

refraction	and	parallax	of	solar	rays.	

		

In	one	of	the	writings	he	dealt	with	GALILEO	's	

theory	on	the	question	of	how	music	is	heard	

(with	the	speculative	assumption	of	a	second	

eardrum	in	the	ear).	In	his	last	works	

(Arithmetica	rationalis	and	Arithmetica	realis)	he	

attempted	to	build	up	a	logical,	physical	and	

metaphysical	system	on	a	mathematical	basis,	

through	which	a	rational	justification	of	the	Catholic	doctrine	of	faith	should	become	possible.	

In	doing	so,	he	was	in	close	correspondence	with	the	influential	Cardinal	LEOPOLDO	DE	MEDICI	

since	the	trial	of	GALILEO	GALILEI	and	his	conviction	was	still	a	present	threat	decades	later,	

especially	in	the	minds	of	the	scientists	living	in	the	Papal	States.	
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Since	MENGOLI	wrote	his	writings	in	a	strange	Latin	that	was	

difficult	to	understand,	interest	in	his	publications	quickly	waned.	

Nevertheless,	there	was	positive	feedback,	among	others	from	the	

Secretary	of	the	Royal	Society,	HENRY	OLDENBURG,	who	was	

particularly	interested	in	MENGOLI's	music	theory.	It	was	only	in	

the	20th	century	that	it	became	clear	that	the	Italian	

mathematician	was	far	ahead	of	his	time	in	some	of	his	

considerations.		

	

One	of	these	topics	was	the	study	of	infinite	series.	Since	antiquity,	arithmetic	with	geometric	

sequences	and	the	corresponding	partial	sum	sequences,	the	geometric	series,	had	been	

known:		

For	a ∈ R 	and	0 < q <1 ,	the	sequence	of	numbers	a, aq,aq2, aq3, ... converges	to	zero	and	the	

sequence	of	partial	sums	 (a+ aq+ aq2 + aq3 + ...+ aqn ) n∈N 	converges	to	the	number	
a
1− q

.		

MENGOLI	now	stated	that	from	"The	sequence	Hn =1+ 12 +
1
3
+ ...+ 1

n−1
+ 1
n
	converges	to	zero"	it	

does	not	necessarily	follow	that	"The	associated	sequence	 ( ak
k=1

n

∑ ) n∈N of	the	partial	sums	

converges	to	a	(finite)	number".		

	

Although	the	French	mathematician	and	philosopher	NICOLE	ORESME	had	already	proved	300	

years	earlier	that	this	was	not	true	for	the	so-called	harmonic	series,	i.e.	the	sequence	of	the	

partial	sums	of	the	reciprocals	of	the	natural	numbers	Hn =1+ 12 +
1
3
+ ...+ 1

n−1
+ 1
n
,	his	proof	was	

forgotten	and	was	also	unknown	to	MENGOLI.	ORESME	had	shown	with	the	help	of	a	diverging	

sequence	smaller	than	Hn ,		that	Hn 	grows	beyond	all	limits:		

H1 =1 ;	H2 =1+ 12 =1.5 ;	H4 =1+
1
2
+ 1
3
+ 1
4( ) >1+ 12 + 1

4
+ 1
4( ) = 2 ;	

H8 =1+
1
2
+ 1
3
+ 1
4( )+ 1

5
+ 1
6
+ 1
7
+ 1
8( ) >1+ 12 + 1

4
+ 1
4( )+ 1

8
+ 1
8
+ 1
8
+ 1
8( ) = 2.5 ;

H16 =1+
1
2
+ 1
3
+ 1
4( )+ ...+ 1

9
+ 1
10
+ ...+ 1

16( ) >1+ 12 + 1
4
+ 1
4( )+ 1

8
+ ...+ 1

8( )+ 1
16
+ ...+ 1

16( ) = 3 	etc.	
MENGOLI,	in	his	book	Novae	quadraturae	arithmeticae,	seu	de	additione	fractionum,	published	

in	1650,	gave	an	indirect	proof	of	this	property,	i.e.	he	made	the	approach:	Suppose	the	series	

has	a	finite	limit	value	H =1+ 1
2
+ 1
3
+ 1
4( )+ 1

5
+ 1
6
+ 1
7( )+ 1

8
+ 1
9
+ 1
10( )+ ... .	
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Now,	for	three	consecutive	fractional	terms	 1
a−1

+ 1
a
+ 1
a+1

	,	it	is	true	that	they	are	greater	than	

three	times	the	middle	fraction:	 1
a−1

+ 1
a
+ 1
a+1

= 1
a
+ a+1+ a−1
(a−1)(a+1)

= 1
a
+ 2a
a2 −1

> 1
a
+ 2a
a3

= 1
a
+ 2
a
= 3
a
	,	for	

example,	 1
2
+ 1
3
+ 1
4
= 1
3
+ 3
4
> 1
3
+ 6
9
= 1
3
+ 2
3
=1	and	 1

5
+ 1
6
+ 1
7
= 1
6
+ 12
35
> 1
6
+ 12
36
= 1
6
+ 2
6
= 1
2
.	Therefore,	

one	can	estimate	as	follows:	H >1+ 3
3
+ 3
6
+ 3
9
+ ...=1+1+ 1

2
+ 1
3
+ ...=1+H 	

	

Since	the	positive	finite	number	cannot	be	greater	than	1+H ,	the	assumption	thatH is	a	finite	

number	must	be	false.	Thus	it	is	proved	that	the	harmonic	series	has	no	finite	limit,	i.e.	is	

divergent.	

	

MENGOLI	also	investigated	the	alternating	harmonic	series	in	his	book	and	found	that	

1− 1
2
+ 1
3
− 1
4
+ 1
5
− 1
6
+ ...= ln(2) 	.	This	result	was	also	proved	18	years	later	and	independently	of	

MENGOLI	by	NICOLAUS	MERCATOR.	

	

Further,	in	the	Novae	quadraturae	one	finds	the	proof	that	the	sum	of	the	reciprocals	of	the	

sequence	of	triangular	numbers	converges	to	the	limit	2.	He	first	showed	that	

1
3
+ 1
6
+ 1
10
+ 1
15
+ ...+ 1

1
2 ⋅n⋅(n+1)

= n−1
n+1

	holds	and	then	that	the	difference	1− n−1
n+1

	can	be	smaller	

than	any	positive	number,	no	matter	how	small,	if	only	n	is	chosen	large	enough	-	a	

description	that	comes	very	close	to	today's	notion	of	limit.	

	

In	a	next	step,	MENGOLI	dealt	more	generally	with	partial	sum	sequences	whose	summands	are	

reciprocals	of	products	of	natural	numbers:	 1
1⋅(1+ r)

+ 1
2⋅(2+ r)

+ 1
3⋅(3+ r)

+ ...+ 1
n⋅(n+ r)

.		

For	r	=	1	you	get	half	of	the	last	sequence	considered.		

For	r	=	2	we	have	 1
3
+ 1
8
+ 1
15
+ ...+ 1

n⋅(n+ 2)
	with	limit	 3

4
,		

for	r	=	3	we	have	 1
4
+ 1
10

+ 1
18
+ ...+ 1

n⋅(n+3)
	with	limit	 18

11 ,		

for	r	=	4	we	have	 1
5
+ 1
12

+ 1
21
+ ...+ 1

n⋅(n+ 4)
	with	limit	 25

48
	and	so	on.		

	

All	partial	sum	sequences	of	this	type	are	convergent;	MENGOLI	was	able	to	prove	that	the	

following	applies	to	the	limit:	 1
1⋅(1+ r)

+ 1
2⋅(2+ r)

+ 1
3⋅(3+ r)

+ ...= 1
r
⋅ (1+ 1

2
+ 1
3
+ ...+ 1

r
) 	.	
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He	tried	in	vain	to	solve	the	special	case	n	=	0.	The	proof	that	the	sequence	of	the	partial	sums	

of	the	reciprocal	square	numbers	Qn =1+ 14 +
1
9
+ 1
16

+ ...+ 1
n2
	converges	and	that	converges	and	

that	the	limit	value	1+ 1
4
+ 1
9
+ 1
16

+ ...= π
2

6
	holds	was	only	achieved	85	years	later	by	LEONHARD	

EULER.		

		 	
	

Previously,	mathematicians	at	the	University	of	Basel,	including	JACOB	BERNOULLI,	had	tried	in	

vain	to	determine	the	limit	(the	so-called	Basel	problem).	Incidentally,	for	a	long	time	it	was	

erroneously	assumed	that	it	was	JACOB	BERNOULLI	who	first	proved	the	divergence	of	the	

harmonic	series,	until	it	was	discovered	that	ORESME	and	MENGOLI	had	beaten	him	to	it.	

MENGOLI	also	investigated	reciprocals	of	products	of	three	consecutive	natural	numbers;	

among	other	things,	he	showed	that		 1
1⋅2⋅3

+ 1
2⋅3⋅4

+ 1
3⋅4⋅5

+ ...= 1
6
+ 1
24

+ 1
60

+ ...= 1
4
.	

	

In	his	1659	work	Geometriae	speciosae	elementa,	he	continued	his	investigations	into	

convergent	and	divergent	sequences;	in	principle,	he	discovered	the	limit	theorems	for	sums,	

products	and	quotients.	He	decomposed	surfaces	by	means	of	inscribed	and	reinscribed	

parallelograms	and	proved	that	the	corresponding	partial	sum	sequences	had	common	limit	

values;	the	influence	of	his	approach	on	WALLIS	and	LEIBNIZ	is	unmistakable.		

	

In	a	paper	published	in	1672	work	Circulo,	he	investigated	

which	surfaces	under	graphs	of	the	type	

	 xm ⋅ (1− x)n 	(in	the	figure	on	the	right,	the	graphs	of		

	 y = x1 ⋅ (1− x)n 	and	 y = xm ⋅ (1− x)1 	with	1≤m,n ≤ 5 	are	

shown).	
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Inspired	by	publications	of	the	French	mathematician	JACQUES	OZANAM,	MENGOLI	dealt	with	

special	DIOPHANTINE	equations,	i.e.	equations	with	integer	solutions,	in	the	1670s.		

	

OZANAM	had	posed	the	following	6-square	problem,	among	others:		

We	are	looking	for	three	natural	numbers	x,	y,	z	whose	differences	 x − y, x − z, y − z 	are	square	

numbers	and	the	differences	 x2 − y2, x2 − z2, y2 − z2 	of	the	squares	are	also	square	numbers.	

(Note:	OZANAM	later	also	posed	an	analogous	problem	with	sums	instead	of	differences.)	

	

MENGOLI	tried	to	prove	that	there	were	no	solutions	to	the	problem;	but	when	OZANAM	

presented	a	solution	triple	(2	288	168,	1	873	432,	2	399	057),	he	saw	his	reputation	

endangered	and	set	out	again	on	a	search.	And	after	intensively	studying	the	properties	of	

PYTHAGOREAN	number	triples,	he	finally	found	two	more	solutions.	
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