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ISAAC NEWTON    (January  4, 1643 – March 31, 1727)  

by HEINZ KLAUS STRICK, Germany  

ISAAC NEWTON was born on Christmas day in the year 1642 
in the hamlet of Woolsthorpe-by-Colsterworth, 
Lincolnshire, England – if one follows the Julian calendar, 
which was still in force in England at the time. His father, 
a well-to-do farmer, died three months before the birth 
of his son. When his mother remarried in 1645, the boy ISAAC was given to his grandmother to be 
raised. He returned to his again-widowed mother with her three additional children in 1653. As 
the oldest son of the by this time well-off widow, it was thought that he would take over the 
management of the family’s estate, but Isaac showed not a whit of interest in, or talent for, such 
things. 

His uncle saw to it that ISAAC attended King’s School, in neighbouring Grantham. He began in about 
1654, but left in 1659 for a while (in a report, he was cited for being lazy and inattentive).  He 
returned to King’s School, and in 1661 enrolled in Trinity College, Cambridge. In addition to 
ARISTOTLE’s philosophy, which formed the center of the curriculum, NEWTON became acquainted 
with the philosophical writings or RENÉ DESCARTES and works on physics by JOHANNES KEPLER and 
GALILEO GALILEI.  

        

In the autumn of 1663, he stumbled on a book on astrology and one on trigonometry and realized 
in both cases that he needed to obtain a deeper understanding of geometry. He therefore decided 
to study EUCLID’s Elements. After that came a self-study of DESCARTES’ La Géométrie, FRANÇOIS VIÈTE’s 
L’algèbre Nouvelle from the year 1646, and the algebraic writings of JOHN WALLIS, in which WALLIS 
describes the calculation of the areas under a parabola and under a hyperbola.  

His principal method involved the indivisibles of BONAVENTURA CAVALIERI, which are infinitely thin 
entities smaller than any arbitrarily given positive value. In his copy of WALLIS, NEWTON wrote, that 

may be how Wallis does it, but this is how I do it. . . . 

The greatest influence on the student NEWTON, however, had ISAAC BARROW, who in 1663 was 
appointed to the newly created Lucasian chair in mathematics at Trinity College, Cambridge. His 
Lectiones mathematicae and Lectiones geometricae joined the foundations of mathematics from 
the classical period with the current knowledge with respect to the determination of the volumes 
of curvilinearly bounded surfaces and to the tangent problem. 

In early summer in 1665 – NEWTON had just obtained his bachelor’s degree – all teaching at the 
university was halted on account of an approaching epidemic of plague, and NEWTON returned to 
the isolation of Woolsthorpe. In the ensuing two years, he conceived the basic ideas behind the 
grand theories that today are associated with his name:  

• the differential and integral calculus, the theory of gravitation, and the theory of optics. 
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After the danger of the plague had passed, NEWTON was rapidly named a “fellow” and then a 
“master”, and in 1669, when BARROW was appointed King’s Chaplain, he was appointed to the 
Lucasian chair that BARROW had vacated.  

BARROW used his influence effectively to promote NEWTON’s theories in the scientific world, but 
NEWTON quickly withdrew his manuscript of the paper De Analysi per aequationes numero 

terminorum infinitas (on analysis by equations infinite in number of terms). 

In this paper, NEWTON shows, among other things, how one can calculate directly the coefficients 
in binomial formulas (that is, not line by line using the schema that we know as PASCAL’s triangle).  

The general binomial series can be written as follows (in today’s notation): 
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Thus, for example, 
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Such a series development is also possible for negative and fractional exponents: 
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Newton’s “proof” of the correctness of this result follows by multiplying out:  

In the product ...)1510631()1( 4323 −+−+−⋅+ xxxxx  all the terms with positive exponents add 

to zero, and all that remains is the number 1.  

An analogous result is obtained with the square-root function: 
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In the case, the proof of correctness of the series development is obtained by squaring the infinite 
sum. Using this method, the extraction of a root is considerably simplified. For example, an 

approximate value for 3  can be calculated in the following way: 
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NEWTON used this new technique of series development that he had devised to determine the 
areas under curves. In his paper can be found a rule in which one can recognize a standard 

formula for the integral: If yax n
m

=  it shall be n
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Using this, he also calculated, among other things, the area under the arc of a circle, thereby 

determining the value of π  to fifteen decimal places. 

    

The infinitesimal calculus developed by NEWTON (method of fluxions and inverse method of 

fluxions) is very strongly oriented toward physical ideas:  

He conceptualizes a curve as a continuous motion of a point; he calls the time-dependent 
variables fluents (flowing quantities), and the rate of change of a quantity y is called its fluxion ẏ. 
For an infinitesimally small interval of time he employs the letter o, while he notates the 
infinitesimally small increase in the fluent x in the infinitesimally small time interval o (that is, the 
instantaneous velocity in an infinitesimally small time period) as ẋo.  

To calculate the slope of a tangent to a curve, one has only to compute the ratio ẏ/ẋ ; here the 
truncation rule replace x + ẋo with x is applied. He recognized that in general, the fluxion of the 
region enclosed by a curve is the curve itself –  and this is nothing other than the fundamental 
theorem of differential and integral calculus. NEWTON discovered it in 1665, but he published his 
findings only in 1704. 

         

NEWTON devoted his first lectures as professor at Cambridge not to analysis, but to optics. 
Departing from the teachings of ARISTOTLE, he championed the point of view that white light is 
composed of light of various colours. From the fact that a prism refracts light at differing angles 
depending on the colour, he concluded that every lens must suffer from a certain aberration 
(which today we call chromatic aberration), and he subsequently constructed a reflecting 
telescope. This brilliant invention led to his induction into the Royal Society as a fellow.  

However, he experienced considerable opposition from ROBERT HOOKE and CHRISTIAAN HUYGENS on 
account of the corpuscular theory of light that he promoted. NEWTON’s reaction to that criticism 
was irrational. He withdrew and decided no longer to publish anything. His Optics, for example, 
did not appear until a year after HOOKE’s death. 
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It was only EDMOND HALLEY who was able to drag NEWTON out of his lethargy and convince him to 
present his new physical worldview in book form. NEWTON’s Philosophiae naturalis principia 

mathematica appeared in 1687. In it is to be found the law of universal gravitation:  

• All matter attracts all other matter with a force proportional to the product of their masses 

and inversely proportional to the square of the distance between them. 

NEWTON was able to show that from the law of gravitation one could derive KEPLER’s laws of 
planetary motion, and conversely. With the three fundamental principles of classical mechanics, 
which today are known as NEWTON’s laws of motion, he created a unified worldview that did not 
need modification until EINSTEIN’s theory of relativity in the twentieth century: 

• Every body persists in its state of being at rest or of 

moving uniformly straight forward, except insofar as it is 

compelled to change its state by force impressed 

(principle of inertia). 

• A force acting on a body is equal to the product of its 

mass and its acceleration (principle of action). 

• To every action there is always an equal and opposite 

reaction or: the forces of two bodies on each other are 

always equal and are directed in opposite directions (principle of interaction). 

The year of publication of the Principia coincided with a period of unrest in the history of England: 
civil war and the execution of King CHARLES I (1649), dictatorship under OLIVER CROMWELL, 
restoration of the monarchy (1658). CHARLES II, son of the executed 
king, became the new ruler in 1660. He was succeeded in 1685 by his 
younger brother, JAMES II. JAMES, however, strengthened the position 
of the Catholic Church, which prompted resistance by Protestant 
groups, who eventually offered the English throne to WILLIAM OF 

ORANGE, governor of the Netherlands. After the Glorious Revolution in 
1688, the powers of the Parliament were increased (Bill of Rights). 
NEWTON, a convinced Protestant, was chosen as representative of the 
University of Cambridge to the new Parliament. 
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Following a breakdown, NEWTON suffered continually from depression and withdrew more and 
more from research. He accepted the position of Warden of the Royal Mint in London and busied 
himself with the reform of English coinage. In 1703, he was elected president of the Royal Society 
and was knighted. Every year, he was reelected to that position. On his death, he was buried in 
Westminster Abbey following a state funeral. 

   

His last years were overshadowed by an acrimonious dispute over who was the actual “inventor” 
of the infinitesimal calculus. Due to its more satisfactory notation and earlier publication in 1684, 
the method discovered by GOTTFRIED WILHELM LEIBNIZ was better known among mathematicians on 
the Continent.  

This priority dispute developed into a question of national honor, which a partisan commission of 
the Royal Society under the leadership of HALLEY “decided” in NEWTON’s favour.  

Today, it is known that each theory was developed independently of the other. 
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Here an important hint for philatelists who also like individual (not officially issued) stamps: 

    

       

    

 Enquiries at europablocks@web.de with the note: "Mathstamps"  


