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University of St Andrews

April 9, 2012

On the
Imaginary roots of Negative Quantities.
By the Right Reverend Bishop Terrot.

1847

1.
√−1 is called impossible or imaginary ∵ no ordinary algebraic quantity which must

be either + or − can give when squared a negative result. Considering however the
common application of Algebra to Geometry we easily see, that the assumption that
every line must be either + or − is inconsistent with the possibility of drawing a line in
any direction. +1 × a means a line whose length is a drawn in one direction, −1 × a
means the same length of line but drawn in a different direction, and to say that a line of
the length of a cannot be drawn in any other direction than one of these is absurd.

√−1
∴ is not impossible any more than − or +1 and shows only the direction of the line to
which it is affixed.

2. If from C [See Fig 1, Lewis] we draw any number of lines such that they shall be in
continued proportion and make at the same time ∠ACA1 = A1CA2 = A2CA3 &c then
calling CA = 1, CA1 = a, CA2 = a2 or the lines are in this series a0, a1, a2, a3 &c while
the angles which they make with the line CA are 0, ϑ, 2ϑ, 3ϑ &c being the angle ACA1×
exponent of that radius vector (CAa for example) from which to CA they are measured.
Thus the line whose angle of inclination is on nϑ has its length = an & vice versâ.

3. If we now assume the several lines CA, CA1, CA2, &c [See Fig 2, Lewis] all equal
or radii of a circle the case will not be altered. Let n be a divisor of 2rπ or let ϑ = 2rπ

n
.

Thus the Radius an = a
2rπ
ϑ is the same in length & position as CA ∴ a1 = 1

1
n = 1

ϑ
2rπ .

We know from ordinary Algebraical principles that the several nth roots of unity may be
expressed by the series a, a2, a3, &c. It therefore follows that we may take the successive
Radii of a circle at equal angles for the several roots of unity & conversely. If R be the
numerical length of radius that radius inclined to the first at ∠ϑ is = R × 1

ϑ
2rπ . We ∴

call 1
ϑ

2rπ the coefficient of direction because it refers only to the direction, never to the
length of a line. Thus, a× 1+

√−3
2

is a line = a simply.
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4. Let us next suppose n = 2, AB will be a diameter & if CA = 1, CB = −1. But
a2 = 1 ∴ a = ±1. But the radii being a, a2, a must evidently be = −1 & a2 = +1.

Next let n = 4, CA, CD, CB, CE are the 4 roots of the equation a4 − 1 = 0. But
the roots are ±1 & ±√−1. Here CA & CB are symbolized by +1 & −1 respectively ∴
CD & CE must be symbolized by +

√−1 & −√−1 respectively, it being however quite
optional which direction from C we account positive or negative either in the horizontal
or perpendicular lines.

5. It appears from the foregoing Props. that if a line is symbolised by = a · 1 ϑ
2rπ we

know both its length & direction. a · 1 ϑ
2rπ ∴ represents the actual transference of the

point in space by moving from A to C. [See Fig 3, Lewis] But it is also clear that its
actual transference in space though not its distance travelled would be the same did it
move from A to B & then from B to C. Thus ∴ (AC× its coefficient of direction) =
(AB× its coefficient of direction) + (BC× its coefficient of direction). Therefore also
the sum of any two lines making an angle with each other is = the diagonal of their
parallelogram completed. Even in this startling form it is only the general assertion of a
proposition particular cases of which we admit when we say AB1 + B1C = AC or that
AC + CB1 = AB1.

1. As examples to elucidate this let ABC (Fig 4) [See Fig 3, Lewis] be an isosceles right
angled triangle described on the radius AD. If we call AB the radius or Hypotenuse a
each of the sides will be in length a√

2
& AB is symbolized by a×1

45
360 = a×1

1
8 = a× 1+

√−1√
2

.

But AC = a√
2
. CB being perpendicular to original position is = a√

2
×√−1 (Prop. 4) ∴

AC + CB = a×
[

1√
2
+

√−1√
2

]
= a× 1+

√−1√
2

= AB.

2. Let BAC = 60◦, BCA = 90◦, then AB in length & direction is a · 1 60
360 = a · 1 1

6 =

a· 1+
√−3
2

, AC = a
2
, CB in length = a·

√
3
2
∴ in length & direction jointly = a·

√
3
√−1
2

= a·
√−3
2

∴ AC + CB = a
2
+ a ·

√−3
2

= a · 1+
√−3
2

= AB.

3. Let the triangle (Fig 5) [See Fig 3, Lewis] be Equilateral & let AB be the original

position. Let AB = a, AC = a · 1 1
6 , CB = a · 1−1

6 ∴ AC + CB = a ·
[
1

1
6 + 1

−1
6

]
=

a ·
[
1

1
6 + 1

1
1
6

]
= a ·

[
1
1
3+1

1
1
6

]
= a ·

[
−1+

√−3
2

+ 1
]
× 2

1+
√−3

= a ·
[
1+

√−3
2

+ 2
1+

√−3

]
= a = AB

6. In the foregoing Props. & Examples it has been taken for granted that we know not
only the several nth roots of unity but also their proper order; that is the order in which
as coefficients they express the radii drawn to the extremities of the arcs ϑ, 2ϑ, 3ϑ, &c.
with the original radius. But when we determine the roots of xn − 1 = 0 we obtain them
in no fixed order. To discover this order we must observe that two roots are always of
the form a ± √−b comparing which with (Fig 6) [See Fig 4, Lewis] a is evidently the
part symbolical of the cosine +

√−b that of the sine because it is affected by
√−1 and

is ∴ perpendicular to original radius. Thus ∴ in a ±√−b,+ refers to radii in the upper
semicircle & − to those in the under; and the two radii whose symbols differ only in the
sign of

√−b are at equal angles to the original radius on opposite sides of it. ∴ the root
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in which a is greatest is nearest to the original radius. Thus the roots of n6 − 1 arranged
properly are

1,
1 +

√−3

2
,
−1 +

√−3

2
,−1,

−1−√−3

2
,
1−√−3

2

symbolizing the radii drawn respectively to the ends of the arcs

0◦ or 360◦, 60◦, 120◦, 180◦, 240◦, 300◦

For if +1 be first −1 having no sinal part must be in the middle. Next 1+
√−3
2

& −1+
√−3
2

must be in the upper half of the circle and 1+
√−3
2

must come first because its cosine is in
CA. And so with the rest.

7. It appears from Props. 4, 5 that the radius drawn to the end of an arc ϑ is = 1
ϑ

2rπ and
this again by a±√−b where a is what is trigonometrically called the cosine &

√
b the sine

of ϑ. Now (Fig 6) [See Fig 4, Lewis] let ∠ACA1 = ϑ, ∠ACA2 = 2ϑ, &c ∠ACAp = pϑ,
then

CA1 = CD +
√−1 ·DA1 = cosϑ+

√−1 · sinϑ,
CAp = cos pϑ+

√−1 · sin pϑ

But by prop. 2,

CAp = CA1
p
=

(
cosϑ+

√−1 · sinϑ
)p

∴
(
cosϑ+

√−1 · sinϑ
)p

= cos pϑ+
√−1 sin pϑ, which is

Demoivre’s Theorem.

cor. If pϑ = 2π, cos pϑ+
√−1 · sin pϑ = 1.

Hence
(
cosϑ+

√−1 · sinϑ
)
,
(
cos 2ϑ+

√−1 · sin 2ϑ
)
&c. represent the several pth roots

of unity. If we arrange the angles, instead of ϑ, 2ϑ, 3ϑ &c, in pairs thus ϑ & p− 1 · ϑ, 2ϑ
& p− 2 · ϑ &c. the several expressions for x−the several pth roots of unity or the simple
factors of xp − 1 = 0 taken in pairs corresponding with the above will be

(
x− cosϑ−√−1 · sinϑ

)
&
(
x− cos p− 1ϑ−√−1 · sin p− 1ϑ

)

which last is =
(
x− cos pϑ− ϑ−√−1 · sin pϑ− ϑ

)
=(

x− cos 2π − ϑ−√−1 · sin 2π − ϑ
)
=

(
x− cosϑ+

√−1 · sinϑ
)

In the same way the next pair must be

(
x− cos 2ϑ+

√−1 · sin 2ϑ
)
&

(
x− cos 2ϑ−√−1 · sin 2ϑ

)
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Multiplying these together for the quadratic factors of xp−1, we obtain when p is even

xp − 1 = (x2 − 1)(x2 − 2x cosϑ+ 1) · (x2 − 2x cos 2ϑ+ 1) to p
2
terms

But when p is odd

xp − 1 = (x− 1)(x2 − 2x cosϑ+ 1) &c to p+1
2

terms

where ϑ it may be observed is = 2π
p

8.

sinA+B = sinA · cosB + cosA · sinB.

cosA+B = cosA · cosB − sinA · sinB.

Let arc AB (Fig 7) [See Fig 5, Lewis] = A, BD2 & AD1 each = B.

Then by Prop. 3, CB = r · 1 A
2π , CD1 = r · 1 B

2π , CD2 = r · 1A+B
2π

∴ CD2 = r · 1 A
2π · 1 B

2π

But by Prop. 7,

1
A
2π = cosA+

√−1 · sinA

1
B
2π = cosB +

√−1 · sinB

∴ 1
A+B
2π = cosA× cosB − sinA× sinB +

√−1
(
sinA · cosB + cosA · sinB

)
,

but 1
A+B
2π = cosA+ B +

√−1 sinA+ B.

Equating then the sinal and cosinal parts of these, we have,

cosA · cosB − sinA · sinB = cosA+ B
sinA · cosB + cosA · sinB = sinA+ B

Definition

It should be observed that in the following propositions a line expressed by letter
simply as AB must be considered both as to length & direction while when in brackets
thus (AB) its length alone is referred to. Thus (AB)1

ϑ
2π = AB.
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9. In any right angled triangle the sum of the squares of the sides is = square of hy-
potenuse.

Let CA (Fig 6) [See Fig 4, Lewis] = r, then CA1 = r · 1 ϑ
2π , & CAn−1 = r · 1−ϑ

2π

∴ CA1 × CAn−1 = r2 × 1
ϑ
2π × 1

1
ϑ
2π

= r2,

Also CA1 = (CD1) +
√−1(D1A1)

CAn−1 = (CD1)−
√−1(D1A1) for (D1A1) = (D1An−1)

∴ CA1 × CAn−1 = (CD1)
2 + (D1A1)

2 which is ∴ = r2 = (CA)2 = (CA1)
2

its equivalent in area.

10. Cotes’ Properties of the Circle.

Let the circumference be divided into n equal parts and join OP1, OP2, OP3, &c (Fig
8) [See Fig 6, Lewis] and also join P1, P2, P3 with C any point in the Diameter. Then

CP1 = OP1 −OC, CP2 = OP2 −OC &c

∴ CP1 · CP2 · CP3 · · · · CPn = Σn · (OA)n − Σn−1 · (OA)n−1.....±OCn,

where Σn is the product of all the coefficients of direction for OP1, OP2, &c, Σn−1 the
sum of ∧ (the product sq? P.G. Tait) these coefficients taken n− 1 together & so on.
But these coefficients are also the roots of the Equation xn − 1 = 0. Now the product
of the roots of this Equation with their signs changed is −1 & Σn is = the product with
their signs unchanged. Therefore if n be even Σn = −1 but if odd +1, and in either case
Σn−1, Σn−2 &c each = 0. Hence CP1 · CP2 · CP3 · · CPn = ±(OA)n ± (OC)n; the upper
signs to be used when n is even, the lower when odd.

Here CP1, CP2 &c consider the lines both as to length and direction, we must ∴ divide
the first or multiply the second by the product of all their coefficients of direction. If n be
even the several pairs as CP1, CPn−1 are evidently of the form (CP1)·1 ϑ

2π and (CPn−1)·1−ϑ
2π

∴ CP1×CPn−1 = (CP1)× (CPn−1) and this is true for every pair except CA = (CA) ·+1
& CB = (CB) · −1 ∴ (CP1) · (CP2) · · · (CPn) = (−OAn

n +OCn) · −1 = OAn −OCn

But if n be odd the several pairs remain as before only no P falling on B, −1 is not
a coefficient of direction ∴ (CP1) · (CP2)· &c = OAn −OCn as before.
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Cor.1. If C be on the opposite side of O from A, the other conditions remaining the
same OC is negative. If n be even the deduction in the prop. remains unchanged. But if
n be odd, (CP1) · (CP2) · · &c = OAn +OCn. Here it may be remarked that when lines
as OA are in the original direction, since the coefficient of direction in that case is unity
it is immaterial whether we write OA or (OA).

Ex. Let n = 3 & OC = 1
2
,

then, (AC) = 3
2
, (CP1) = (CP2) =

√
3
2

∴ (CA) · (CP1) · (CP2) =
3
2
·
√
3
2
·
√
3
2

= 9
8
= 1 + 1

8
= 1

3
+ 1

2

3
= OA3 +OC3.

Cor.2. If C be in OA produced the reasoning & result will be the same as in the prop.,
only, that now CA & CB being of the same affection −1 is not a divisor of the second
member of the Equation, &,

(CP1) · (CP2)· &c = (OC)n − (OA)n.

11. If from A the extremity of the Diameter (Fig 8) [See Fig 6, Lewis] the circumference
be divided into n equal parts & if these several extremities be joined, then

(AP1) · (AP2)(APn−1) = nCAn−1

As in former prop. AP1 = CP1 − CA, AP2 = CP2 − CA & so on

∴ AP1 · AP2 · ·APn−1 = CP1 − CA · CP2 − CA &c to n− 1 factors

= Rn−1 · {Sn−1 − Sn−2 .... ± S1 ± 1}

where S1, S2 &c are the sum, sum of products two & two, &c of all the values of 1
1
n

except unity there being no line drawn from A to the circumference in the direction CA.
S1, S2 &c are ∴ the coefficients of the Equation xn−1

x−1
or of xn−1 + xn−2 + ... &c with the

signs changed for the products of odd ascending roots, unchanged for even ones.

If ∴ n− 1 be even Sn−1 = +1, Sn−2 = −1, & so on,

if n− 1 be odd Sn−1 = −1, Sn−2 = +1 & so on.

∴ AP1 ·AP2 ·&c = Rn−1 ×±{1 + 1 + 1 to n terms} = ±nRn−1 according as n− 1 is
even or odd.

If n− 1 be even, AP1 · AP2· &c = (AP1)(AP2) &c · the several pairs of coefficients
giving unity for their products.
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If n− 1 be odd, then the several pairs give as before their product unity but there
remains the factor AB which has for its coefficient −1.

∴ in either case (AP1)(AP2)&c(APn−1) = nRn−1

12. If by this method we undertake to prove that the angles at the base of an Isosceles
triangle are = eachother we have (AC) = (BC) (Fig 5). [See Fig 3, Lewis]

But AC = (AC) · 1 A
2π = (AC) · [a+√−b],

CB = AD = (AC) · 1−B
2π = (AC) · [a′ +√−b′].

But AC + CB = AB.

∴ (AC) · (a+ a′ +
√−b+

√−b′) = AB = a positive quantity

consequently the sinal parts destroy one another or
√−b = −√−b′ or b = −b′. Therefore

the angles A & B have their sines of equal length but of different affections. The angles
themselves ∴ being together less than π are geometrically equal to each other.

Cor. Much in the same way we might prove that in every triangle the greater side has
the greater angle opposite to it & vice versâ that the greater angle has the greater side
opposite to it.

May 27th 1847
P.G. Tait.
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Appendices

A Images to accompany the text: Figures 1–8

Please note that my Figure 3 contains Figures 3, 4 and 5 as referred to in the text,
which throws out the subsequent correspondence between Tait’s numbering of figures and
mine. I feel this is a necessary inconvenience as it allows the reader to view the figures
in context. Readers are directed to the appropriate figure by comments within square
brackets, e.g. [See Fig 3, Lewis].
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Figure 1: An extract from Terrot’s lecture; Tait’s drawing of Figure 1 (Tait–Maxwell
School-book)
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Figure 2: An extract from Terrot’s lecture; Tait’s drawing of Figure 2 (Tait–Maxwell
School-book) 10



Figure 3: An extract from Terrot’s lecture; Tait’s drawing of Figures 3, 4, 5 (Tait–Maxwell
School-book)
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Figure 4: An extract from Terrot’s lecture; Tait’s drawing of Figure 6 (Tait–Maxwell
School-book)
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Figure 5: An extract from Terrot’s lecture; Tait’s drawing of Figure 7 (Tait–Maxwell
School-book)
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Figure 6: An extract from Terrot’s lecture; Tait’s drawing of Figure 8 (Tait–Maxwell
School-book)
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B Editorial corrections

The following table records the necessary editorial corrections made to the transcrip-
tion:

Reference Editorial correction
§2, pg 1 Tait has ‘∠ACA1 = A1CA2

2 = A2CA3 &c then calling
CA = 1, CA1 = a, CA2 a2’. I cannot see why Tait has
the superscript 2 in ‘CA2

2’ so I have ommited it. I have
also added in an equals sign between ‘CA2’ and ‘a2’.

Ex.1, pg 2 Tait has ‘∴ AC + CB = a ×
[

1√
2
+

√−1√
2

]
= a = a ×

1+
√−1√
2

= AB.’ I have ommited the ‘= a’ as I believe it
appears only since there is a break in the line.

§7, pg 3 Tait has ‘∴
(
cosϑ+

√−1·sinϑ
)p

= cos pϑ+
√
+1 sin pϑ’

which is incorrect: there should of course be a −1 under
the second square root sign, rather than +1. The ink
on the original appears smudged here. Perhaps Tait
attempted to correct his error.

§9, pg 5 Tait has ‘which is ∴ = r2 = (CA2) = (CA1)
2’. I have

repositioned the superscipt 2 to sit in its proper place,
outside the bracket ‘(CA)’.

§10, pg 5 Tait has ‘and this is true for every pair except CA =
(CA) ·+1 & CB = (CB) ·−1 ∴ (CP1) · (CP2) · · ·CPn =
(−OAn

n+OCn) · −1 = OAn−OCn’ I have added in the
bracket around CPn which Tait has forgotten.

§11, pg 6 Tait has ‘If n− 1 be even, AP1 ·AP2· &c = (AP1)(AP2)
&c the several pairs of coefficients giving unity for their
products.’ I have added in · on the right hand side of
the equation (as a sign of multiplication), as without it,
Terrot’s meaning is at first unclear.

Table 1: Editorial changes made to Tait’s notes.
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